Topic: HOW TO ADD INTERLACED (640 X 450) GRAPHICS TO THE COLOR COMPUTER 3.
Author: GREG BEELEY
Origin: ATLANTA, GA
First BBS: THE ACS BBS (404)-636-2991
Date Sent: JULY 1992
Interlaced graphics is a technique used to double the vertical
resolution of a computer's screen. It is accomplished by alternately
scanning the even lines and the odd lines. Thus, a full screen is
scanned every 1/30 second instead of every 1/60 second. The only
disadvantage to this technique is that the screen can have some
"flicker" in it, but television uses this technique as well with good
results.
Thus, in order to implement this technique on a CoCo 3, one
must have a way to make the screen fine-scroll up or down one-half
the distance of separation of the normal scan lines. Then, the software
needs only to have an interrupt occur every time a screen scan begins
and have the interrupt service routine switch the hardware screen start
pointer to the screen with the other set of lines (even or odd) and
move the screen up or down by 1/2 line. The whole process looks like this:
60hz INTERRUPT!!!

1) Set video start pointer to screenO. (even lines)

2) Set screen at normal position.

3) Clear the interrupt.

4) Return from interrupt.

.1/60 second passes.
60hz INTERRUPT!!!

1) Set video start pointer to screenl. (odd lines)

2) Set screen to 1/2 line lower than usual,

3) Clear the interrupt.

4) Return from interrupt.

- - . .1/60 second passes.

(this process repeats over and over.)

Thus, the way it appears on the screen is as follows: (asterisks are

screen pixels)... (lines 0,2,4,etc are the ones that normally would show.)
oMo Mk R KR R ok ke ek ok ol pEraan cline D) Eline Ouobrdereanl]
RNk R o RO R oR Rk e dlecreen LiRe Yialline) ot shaan 1
Eod e IR e e de ok Tk ko ok 0k (Bevent] 1dne . 2) o (laRe L of screent)
REE KGR W e Kak G Rk RS e - Eea{acrpandine (3t (Tdne vl cof g@raanl)
Tk MR kW e e L Wk R ek e IBorasn Tihe 4) fline 2 of “streent)

.and so forth.

The only problem with the CoCo 3 is how to make the screen shift

by 1/2 scan line. The GIME chip does not support this function, so some
additional-cost hardware must be added. Fortunately, the cost is very
low. Here are the components you will need:

NPN transistor (RS catalog #276-2009): 59 cents
10k resistor (RS catalog #271-1335): 39 cents
0.47 uf capacitor (RS catalog #272-1433): 59 cents
10k multiturn trimmer (RS catalog #271-343): $1.49

some wire.

Total cost: about $3.10 to double your resolution!!!

{(you may wish to buy a PC board to aid installation. I suggest catalog
#276-148. I simply soldered the components together in my version.)

To display the circuit schematic, run "CIRCUIT.BAS" for a HSCREEN1 image
of the circuit. Copy down the circuit and directions. Please note that
removing your CoCo's cover voids any warranty (who has a warranty now-

it has been some time since they stopped selling CoCo's!) By installing
this circuit, you assume all risks associated with doing so. Be sure you
know what you are doing before you try this. The circuit is simple,
though--it is a great one to learn with. Be careful when removing

the keyboard--do not tear the plastic connector strip. Handle the
keyboard very carefully. And--as always--don't install the circuit while
the computer or other equipment is plugged in. We need as many CoCo
users as possible. 1If you or the computer gets fried, there might be a
problem with you using your CoCo.

When you solder the wire to the PIA, DO NOT HOLD THE SOLDERING

IRON THERE FOR MORE THAN A SECOND OR TWO. A heat sink for soldering
is strongly suggested (RS #64-2227 $4.19). You do not want to damage
that PIA chip.

The output address is bit 7 of $FF22. To make the screen shift,

simply poke (or store) a 1 or 0 in that bit. Note that when you do so,
you also invoke some VDG emulation in the GIME. Thus, this circuit
can only be used with CoCo 3 graphics (why do you want to use

PMODE anyhow?). It will cause the 32-column semigraphics VDG screen
to swap between graphics and text 60 times per second. Also, this
circuit only works with RGB monitors - the composite and RF outputs
are unaffected by the circuit.

This is how the circuit works: capacitor Cl causes a phase shift in

the vertical synchronization line to the monitor, which causes the screen

to fine-scroll a certain amount. Resistor R2 is set so that the phase shift
amount is precisely 1/2 of the normal separation between lines on the
screen. Transistor Q1 connects or disconnects R2 and Cl to the ground,
enabling or disabling the phase shift in accordance with the state of

its base. Resistor R1 connects the PIA output to the transistor, allowing
the transistor to be "on" when the PIA output is at 5 volts (logic 1).

Once the circuit is installed, turn the trimmer to about 5k position

(turn it any direction until it stops, then turn it back 7 1/2 turns). Then
LOADM and EXEC the LINEART.BIN demo. Turn the trimmer until the lines on
the screen look "right" and smooth. It may help to turn the contrast all
the way down, turn the brightness up until the display is barely visible,
and adjust the trimmer until the display looks solid - no individual scan
lines can be seen. Even lines which are nearly horizontal should look

very smooth.

I would love to see some graphics / text demos show up for the COCO
that use this technique (maybe even a 50-line per screen word processor!).
Maybe someone could write a graphics drawing program for it. The source
for the demo is available and will show how to implement a mapping
routine for the interlaced screens. Here is the general technique:
(d-color 640 x 450 screen)
l) Verify range of coordinates.
2) LSR the Y coordinate to put screen# in carry.
3) Depending on carry, put screen0 or screenl in address space.
4) Multiply residue in Y coordinate by 160 and add to that
the location of the screen start in memory.
5) Get bits 0 and 1 of X for the position in the byte.
6) LSR X coordinate twice to find actual X value
7) Add X value to Y value to find location of the byte.
8) Use color# and Position# (from step 5) to first AND the
byte to clear the pixel and then OR the byte to set the

pixel to the right color. See the source to understand how

I accomplished this.

One other thing to look at in the source: study the clear screen

code segment carefully. It may be nonstandard to use the S stack in

this way, but it sure is fast! Compare how fast the screen is cleared in
this demo with how fast BASIC clears the HSCREENs. No, I didn't cheat.
All the palette registers remained "on" during the clear screen. It just
turns out that you can get a very good ratio of bytes cleared per cycle

by pushing zeros onto a stack that resides on the graphics page. The
ratio is better than 1 byte per 2 cycles! Compare that with the following
source code:

100 BEGIN LDX SCRNST Point to screen beginning.
110 LDD #0 Clear register.

120 LOOP 5TD , X4+ Clear some bytes,

130 CMPX SCRNEN Done clearing?

140 BNE LOOP Clear more if not.

The main loop contains instructions that munch 18 cycles, yet the loop

clears only 2 bytes per iteration!!! That's 1 byte per 9 cycles!!! Of course,
my method uses more memory... but compare that memory to the

amount that the graphics screen consumes! But, memory vs. speed is a
trade-off that all programmers have to deal with.

HAVE FUN!!!

Copyright (C) 1992 by Greg Beeley. This may be distributed freely, but
may not be sold in any way. The files LINEART.BIN, LINEART.ASM,
CIRCUIT.BAS, and INTRLACE.TXT should all be included in any transfer of
this information. The copyright message may not be removed.

INTERLACED GRAPHICS CIRCUIT FOR COCO III

8 Pin 17 nf é
T SYHE Pin 9 of RGEB connector
GROUND Pin 1 or 2 of RGBE connector

Q1

R1 c1

TD PIA i 1y

At TO ¥=SYNC

R2
GROUND

51 47uf Capacitor

1 NPN Transistor
R1 lgk fixed resistor
R2 18k multiturn tr;mmer resistor

